Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Am Soc Nephrol ; 32(9): 2242-2254, 2021 09.
Article in English | MEDLINE | ID: covidwho-1702796

ABSTRACT

BACKGROUND: Although coronavirus disease 2019 (COVID-19) causes significan t morbidity, mainly from pulmonary involvement, extrapulmonary symptoms are also major componen ts of the disease. Kidney disease, usually presenting as AKI, is particularly severe among patients with COVID-19. It is unknown, however, whether such injury results from direct kidney infection with COVID-19's causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), or from indirect mechanisms. METHODS: Using ex vivo cell models, we sought to analyze SARS-CoV-2 interactions with kidney tubular cells and assess direct tubular injury. These models comprised primary human kidney epithelial cells (derived from nephrectomies) and grown as either proliferating monolayers or quiescent three-dimensional kidney spheroids. RESULTS: We demonstrated that viral entry molecules and high baseline levels of type 1 IFN-related molecules were present in monolayers and kidney spheroids. Although both models support viral infection and replication, they did not exhibit a cytopathic effect and cell death, outcomes that were strongly present in SARS-CoV-2-infected controls (African green monkey kidney clone E6 [Vero E6] cultures). A comparison of monolayer and spheroid cultures demonstrated higher infectivity and replication of SARS-CoV-2 in actively proliferating monolayers, although the spheroid cultures exhibited high er levels of ACE2. Monolayers exhibited elevation of some tubular injury molecules-including molecules related to fibrosis (COL1A1 and STAT6) and dedifferentiation (SNAI2)-and a loss of cell identity, evident by reduction in megalin (LRP2). The three-dimensional spheroids were less prone to such injury. CONCLUSIONS: SARS-CoV-2 can infect kidney cells without a cytopathic effect. AKI-induced cellular proliferation may potentially intensify infectivity and tubular damage by SARS-CoV-2, suggesting that early intervention in AKI is warranted to help minimize kidney infection.


Subject(s)
Acute Kidney Injury/etiology , Acute Kidney Injury/virology , COVID-19/complications , SARS-CoV-2/pathogenicity , Spheroids, Cellular/virology , Animals , Cells, Cultured , Chlorocebus aethiops , Cohort Studies , Cytopathogenic Effect, Viral , Epithelial Cells/pathology , Epithelial Cells/virology , Host Microbial Interactions , Humans , Interferon Type I/metabolism , Kidney/immunology , Kidney/pathology , Kidney/virology , Mice , Mice, Inbred NOD , Mice, SCID , Models, Biological , Pandemics , Receptors, Virus/metabolism , Retrospective Studies , SARS-CoV-2/physiology , Spheroids, Cellular/pathology , Vero Cells , Virus Replication
2.
PLoS Pathog ; 17(12): e1010175, 2021 12.
Article in English | MEDLINE | ID: covidwho-1592244

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. Currently, as dangerous mutations emerge, there is an increased demand for specific treatments for SARS-CoV-2 infected patients. The spike glycoprotein on the virus envelope binds to the angiotensin converting enzyme 2 (ACE2) on host cells through its receptor binding domain (RBD) to mediate virus entry. Thus, blocking this interaction may inhibit viral entry and consequently stop infection. Here, we generated fusion proteins composed of the extracellular portions of ACE2 and RBD fused to the Fc portion of human IgG1 (ACE2-Ig and RBD-Ig, respectively). We demonstrate that ACE2-Ig is enzymatically active and that it can be recognized by the SARS-CoV-2 RBD, independently of its enzymatic activity. We further show that RBD-Ig efficiently inhibits in-vivo SARS-CoV-2 infection better than ACE2-Ig. Mechanistically, we show that anti-spike antibody generation, ACE2 enzymatic activity, and ACE2 surface expression were not affected by RBD-Ig. Finally, we show that RBD-Ig is more efficient than ACE2-Ig at neutralizing high virus titers. We thus propose that RBD-Ig physically blocks virus infection by binding to ACE2 and that RBD-Ig should be used for the treatment of SARS-CoV-2-infected patients.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin G/metabolism , Protein Domains , Recombinant Fusion Proteins/metabolism , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Animals , Binding Sites , Binding Sites, Antibody , COVID-19/prevention & control , Chlorocebus aethiops , Female , HEK293 Cells , Humans , Immunoglobulin Fc Fragments/therapeutic use , Immunoglobulin G/therapeutic use , Mice, Transgenic , Neutralization Tests , Protein Binding , Recombinant Fusion Proteins/therapeutic use , SARS-CoV-2/drug effects , Vero Cells
3.
Life Sci Alliance ; 5(1)2022 01.
Article in English | MEDLINE | ID: covidwho-1515726

ABSTRACT

Understanding pathways that might impact coronavirus disease 2019 (COVID-19) manifestations and disease outcomes is necessary for better disease management and for therapeutic development. Here, we analyzed alterations in sphingolipid (SL) levels upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection induced elevation of SL levels in both cells and sera of infected mice. A significant increase in glycosphingolipid levels was induced early post SARS-CoV-2 infection, which was essential for viral replication. This elevation could be reversed by treatment with glucosylceramide synthase inhibitors. Levels of sphinganine, sphingosine, GA1, and GM3 were significantly increased in both cells and the murine model upon SARS-CoV-2 infection. The potential involvement of SLs in COVID-19 pathology is discussed.


Subject(s)
COVID-19/metabolism , Disease Models, Animal , Sphingolipids/metabolism , Virus Replication/physiology , Animals , COVID-19/prevention & control , COVID-19/virology , Chlorocebus aethiops , Chromatography, Liquid/methods , Dioxanes/pharmacology , Gangliosides/blood , Gangliosides/metabolism , Glucosyltransferases/antagonists & inhibitors , Glucosyltransferases/metabolism , Humans , Mass Spectrometry/methods , Mice, Transgenic , Pyrrolidines/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Sphingolipids/blood , Sphingosine/analogs & derivatives , Sphingosine/blood , Sphingosine/metabolism , Vero Cells , Virus Replication/drug effects
4.
Nat Commun ; 12(1): 5819, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1454763

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 2019 (COVID-19) pandemic. The continued spread of SARS-CoV-2 increases the probability of influenza/SARS-CoV-2 coinfection, which may result in severe disease. In this study, we examine the disease outcome of influenza A virus (IAV) and SARS-CoV-2 coinfection in K18-hACE2 mice. Our data indicate enhance susceptibility of IAV-infected mice to developing severe disease upon coinfection with SARS-CoV-2 two days later. In contrast to nonfatal influenza and lower mortality rates due to SARS-CoV-2 alone, this coinfection results in severe morbidity and nearly complete mortality. Coinfection is associated with elevated influenza viral loads in respiratory organs. Remarkably, prior immunity to influenza, but not to SARS-CoV-2, prevents severe disease and mortality. This protection is antibody-dependent. These data experimentally support the necessity of seasonal influenza vaccination for reducing the risk of severe influenza/COVID-19 comorbidity during the COVID-19 pandemic.


Subject(s)
COVID-19/immunology , COVID-19/virology , Coinfection/immunology , Coinfection/virology , Immunity , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Viral/immunology , COVID-19/pathology , Cell Line , Disease Models, Animal , Female , Humans , Inflammation/genetics , Lung/pathology , Lung/virology , Male , Mice, Inbred C57BL , Mice, Transgenic , Up-Regulation/genetics , Viral Load/immunology
5.
J Biol Chem ; 296: 100470, 2021.
Article in English | MEDLINE | ID: covidwho-1101336

ABSTRACT

The ongoing COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major threat to global health. Vaccines are ideal solutions to prevent infection, but treatments are also needed for those who have contracted the virus to limit negative outcomes, when vaccines are not applicable. Viruses must cross host cell membranes during their life cycle, creating a dependency on processes involving membrane dynamics. Thus, in this study, we examined whether the synthetic machinery for glycosphingolipids, biologically active components of cell membranes, can serve as a therapeutic target to combat SARS-CoV-2. We examined the antiviral effect of two specific inhibitors of glucosylceramide synthase (GCS): (i) Genz-123346, an analogue of the United States Food and Drug Administration-approved drug Cerdelga and (ii) GENZ-667161, an analogue of venglustat, which is currently under phase III clinical trials. We found that both GCS inhibitors inhibit replication of SARS-CoV-2. Moreover, these inhibitors also disrupt replication of influenza virus A/PR/8/34 (H1N1). Our data imply that synthesis of glycosphingolipids is necessary to support viral life cycles and suggest that GCS inhibitors should be further explored as antiviral therapies.


Subject(s)
Antiviral Agents/pharmacology , Carbamates/pharmacology , Dioxanes/pharmacology , Glucosyltransferases/antagonists & inhibitors , Glycosphingolipids/antagonists & inhibitors , Influenza A Virus, H1N1 Subtype/drug effects , Pyrrolidines/pharmacology , Quinuclidines/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemical synthesis , COVID-19/enzymology , COVID-19/virology , Carbamates/chemical synthesis , Cell Membrane/drug effects , Cell Membrane/enzymology , Cell Membrane/virology , Chlorocebus aethiops , Clinical Trials, Phase III as Topic , Dioxanes/chemical synthesis , Dogs , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Gene Expression Regulation , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Glycosphingolipids/biosynthesis , Host-Pathogen Interactions/genetics , Humans , Influenza A Virus, H1N1 Subtype/growth & development , Influenza A Virus, H1N1 Subtype/metabolism , Influenza, Human/drug therapy , Influenza, Human/enzymology , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Pyrrolidines/chemical synthesis , Quinuclidines/chemical synthesis , SARS-CoV-2/growth & development , SARS-CoV-2/metabolism , Signal Transduction , Vero Cells , Virus Replication/drug effects , COVID-19 Drug Treatment
6.
Nat Commun ; 12(1): 944, 2021 02 11.
Article in English | MEDLINE | ID: covidwho-1078588

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), exhibits high levels of mortality and morbidity and has dramatic consequences on human life, sociality and global economy. Neutralizing antibodies constitute a highly promising approach for treating and preventing infection by this novel pathogen. In the present study, we characterize and further evaluate the recently identified human monoclonal MD65 antibody for its ability to provide protection against a lethal SARS-CoV-2 infection of K18-hACE2 transgenic mice. Eighty percent of the untreated mice succumbed 6-9 days post-infection, while administration of the MD65 antibody as late as 3 days after exposure rescued all infected animals. In addition, the efficiency of the treatment is supported by prevention of morbidity and ablation of the load of infective virions in the lungs of treated animals. The data demonstrate the therapeutic value of human monoclonal antibodies as a life-saving treatment for severe COVID-19 infection.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Neutralizing/administration & dosage , Antibodies, Viral/administration & dosage , COVID-19/immunology , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Chlorocebus aethiops , Female , Immunoglobulin G/administration & dosage , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Lung/pathology , Lung/virology , Male , Mice, Inbred C57BL , Mice, Transgenic , SARS-CoV-2/classification , SARS-CoV-2/physiology , Seroconversion , Vero Cells , Viral Load , COVID-19 Drug Treatment
7.
Nat Commun ; 11(1): 6402, 2020 12 16.
Article in English | MEDLINE | ID: covidwho-983658

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 imposes an urgent need for rapid development of an efficient and cost-effective vaccine, suitable for mass immunization. Here, we show the development of a replication competent recombinant VSV-∆G-spike vaccine, in which the glycoprotein of VSV is replaced by the spike protein of SARS-CoV-2. In-vitro characterization of this vaccine indicates the expression and presentation of the spike protein on the viral membrane with antigenic similarity to SARS-CoV-2. A golden Syrian hamster in-vivo model for COVID-19 is implemented. We show that a single-dose vaccination results in a rapid and potent induction of SARS-CoV-2 neutralizing antibodies. Importantly, vaccination protects hamsters against SARS-CoV-2 challenge, as demonstrated by the abrogation of body weight loss, and  alleviation of the extensive tissue damage and viral loads in lungs and nasal turbinates. Taken together, we suggest the recombinant VSV-∆G-spike as a safe, efficacious and protective vaccine against SARS-CoV-2.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/immunology , Vesicular stomatitis Indiana virus/immunology , Animals , Antibodies, Viral/immunology , Antigens, Viral/immunology , Body Weight , COVID-19/virology , Cell Line , Cricetinae , Disease Models, Animal , Dose-Response Relationship, Immunologic , Genome, Viral , Lung/pathology , Lung/virology , Mice, Inbred C57BL , Mutation/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/ultrastructure , Vaccination , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL